A New Estimation Approach to Integrate Latent Psychological Constructs in Choice Modeling
نویسندگان
چکیده
In the current paper, we propose a new multinomial probit-based model formulation for integrated choice and latent variable (ICLV) models, which, as we show in the paper, has several important advantages relative to the traditional logit kernel-based ICLV formulation. Combining this MNP-based ICLV model formulation with Bhat’s maximum approximate composite marginal likelihood (MACML) inference approach resolves the specification and estimation challenges that are typically encountered with the traditional ICLV formulation estimated using simulation approaches. Our proposed approach can provide very substantial computational time advantages, because the dimensionality of integration in the log-likelihood function is independent of the number of latent variables. Further, our proposed approach easily accommodates ordinal indicators for the latent variables, as well as combinations of ordinal and continuous response indicators. The approach can be extended in a relatively straightforward fashion to also include nominal indicator variables. A simulation exercise in the virtual context of travel mode choice shows that the MACML inference approach is very effective at recovering parameters. The time for convergence is of the order of 30 minutes to 80 minutes for sample sizes ranging from 500 observations to 2000 observations, in contrast to much longer times for convergence experienced in typical ICLV model estimations.
منابع مشابه
Modeling Interactions Between Latent and Observed Continuous Variables Using Maximum-Likelihood Estimation In Mplus
Modeling with random slopes is used in random coefficient regression, multilevel regression, and growth modeling. Random slopes can be seen as continuous latent variables. Recently, a flexible modeling framework has been implemented in the Mplus program to do modeling with such latent variables combined with modeling of psychometric constructs, typically referred to as factors, measured by mult...
متن کاملStructural Equations Modeling of Hidden Genetic Constructs of Production, Reproduction and Longevity in Holstein Cows in Iran
In structural equation modeling, it is possible to create hidden variables that cannot be directly measured by the researcher. The aim of this study was to model the structural equations of hidden genetic constructs of production, reproduction and longevity of Holstein dairy cows in Iran using breeding value of the traits that make up these constructs. Accordingly, the breeding value of th...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملA flexible full-information approach to the modeling of response styles.
We present a flexible full-information approach to modeling multiple user-defined response styles across multiple constructs of interest. The model is based on a novel parameterization of the multidimensional nominal response model that separates estimation of overall item slopes from the scoring functions (indicating the order of categories) for each item and latent trait. This feature allows ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013